Matrix feedback enables diverse higher-order patterning of the extracellular matrix
نویسندگان
چکیده
منابع مشابه
determinant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولBernoulli matrix approach for matrix differential models of first-order
The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...
متن کاملHigher numerical ranges of matrix polynomials
Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...
متن کاملConditional switches for extracellular matrix patterning in Drosophila melanogaster.
An F(1) mutagenesis strategy was developed to identify conditional mutations affecting extracellular matrix (ECM) patterning. Tubulogenesis requires coordinated movement of epithelial cells and deposition of a multilayered ECM. In the Drosophila ovary, an epithelium of follicle cells creates the eggshells, including the paired tubular dorsal appendages (DAs) that act as breathing tubes for the ...
متن کاملMyocardial extracellular matrix: an ever-changing and diverse entity.
The cardiac extracellular matrix (ECM) is a complex architectural network consisting of structural and nonstructural proteins, creating strength and plasticity. The nonstructural compartment of the ECM houses a variety of proteins, which are vital for ECM plasticity, and can be divided into 3 major groups: glycoproteins, proteoglycans, and glycosaminoglycans. The common denominator for these gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2019
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1007251